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4.1   Introduction 44 

Structural relaxation refers to changes in the kinetic and thermodynamic properties of 45 

nonequilibrium amorphous materials as they approach the amorphous (not crystalline) meta-46 

equilibrium state. It is intimately related to the glass transition phenomenon and glassy state 47 

relaxation and a portion of this chapter is accordingly devoted to thermodynamics and the glass 48 

transition. There are two significant differences between the kinetics of structural relaxation and 49 

the other relaxations considered in earlier chapters. The first is that the underlying phenomena 50 

are less well characterized and are often based on extrapolations. They are not understood at 51 

anywhere near the level of electrical and visco-elastic relaxations - there are no Maxwell 52 

equations nor Newton's laws for succor. This issue essentially arises from the fact that 53 

"everything changes with temperature". The second difference is that structural relaxation is 54 

strongly nonlinear because the average structural relaxation time depends on the thermodynamic 55 

state as well as on temperature – thus the isothermal relaxation time changes as isothermal 56 

average relaxation towards thermodynamic equilibrium proceeds. Mathematically this is handled 57 

by making the average relaxation time a function of time and replacing the elapsed time with the 58 

reduced time defined below. 59 

 Structural relaxation is most significant within and below the glass transition temperature 60 

range that is often but misleadingly referred to as the "glass transition temperature" Tg. Typically 61 

Tg is defined as lying within the glass transition temperature range (often but not always 62 

midway) and this tradition is followed here until definitions of the glass transition temperature 63 

are discussed in §4.8.3.2. Essentially "Tg" will be used as an abbreviation for "glass transition 64 

temperature range". 65 

 66 

4.2   Elementary Thermodynamics 67 

4.2.1 Nomenclature 68 

The SI unit for temperature (Kelvin, symbol K) is used throughout. As usual constant 69 

pressure processes are referred to as isobaric, those at constant volume as isochoric, and those at 70 

constant temperature as isothermal. The convention that intensive properties such as pressure and 71 

temperature are written in lower case and extensive properties such as volume, enthalpy, entropy, 72 

heat capacity etc., are written in upper case is not followed here, as is often done in textbooks. 73 

The principle reasons for this are that an exception must always be made for temperature T to 74 

avoid confusion with the time t, and that units indicate the distinction anyway (per kg or per 75 

mole for extensive quantities for example). Boltzmann's constant is written as kB and the ideal 76 

gas constant is written as R as is customary. The symbol τ is used for a relaxation time 77 

considered as a variable and τ0 refers to any characteristic relaxation time in expressions such as 78 

the nonexponential Williams-Watt (WW) decay function. 79 

Thermodynamics is fraught with subtleties that require extensive study to master, so the 80 

present exposition is necessarily simplified and abbreviated. Recommended books on the subject 81 

include Fermi [1] (terse), Lewis and Randall [2] (aimed at physical chemists), and Landau & 82 

Lifshitz [3] (aimed at physicists). Be aware that [3] dispenses with Boltzmann's constant (for 83 

good reason, see below) so that T in many of its formulae should be replaced with kBT to make 84 

contact with common usage – this conversion has been made for the formulae from [3] cited 85 

below. 86 

 87 
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4.2.2 Temperature Scales 88 

 Four scales are extant: Fahrenheit (
o
F), Celsius or Centigrade (

o
C), Rankin (

o
R), and 89 

Kelvin (K). Only the Kelvin scale is used in thermodynamics (and in most of science for that 90 

matter) but 
o
C is occasionally used, especially in the chemical and material science literatures. 91 

Only in the US is the Fahrenheit scale used in everyday use. 92 

The Celsius and Fahrenheit scales are defined by the melting (Tm) and boiling (Tb) 93 

temperatures of water at atmospheric pressure. For the Fahrenheit scale Tm is 32
o
F and Tb is 94 

212
o
F, the values of which have historical empirical roots: 0

o
F was originally defined to be the 95 

lowest temperature at which water could be frozen when a salt was added, and 100
o
F was 96 

defined to be the temperature of human blood. These values have since been modified to 97 

simplify the conversion between the Fahrenheit and more objective Celsius scales. For the 98 

Celsius scale Tm is defined to be 0
o
C and Tb is 100

o
C. Thus the difference (Tb - Tm) is 100

o
C 99 

compared with 180
o
F, and after accounting for the 32

o
 difference at the melting temperature of 100 

ice the equations for conversion between the Fahrenheit (F) and Celsius (C) scales are 101 

 102 

 32 /1.80,

1.80 32.

C F

F C

 

 
  (4.1) 103 

 104 

The temperature at which the two scales are numerically equal is therefore –40
o
. 105 

 The 
o
R and K scales are based on the lowest possible temperature being zero (for the 106 

justification of such an absolute zero see any introductory physics or physical chemistry text as 107 

[1]–[3]). The absolute Kelvin scale is based on the experimental result that such an absolute zero 108 

occurs at –273.15
o
C and the Rankin scale is based on an absolute zero that occurs at about 109 

–459.7
o
F. 110 

 111 

4.2.3 Quantity of Material 112 

 The most common metric is the mole whose unit the mol equals Avogadro's number 113 
236.02 10AN   . Even although the mole is a pure number it is useful to keep track of it as if it 114 

had the unit mol because it is clearly and importantly different from just the number of particles 115 

being considered. When using the mole it is important to be aware of the question "mole of 116 

what?". For example the gaseous phase of the element sulfur consists of molecules such as S2, 117 

S4, S6 and S8 so that per mole of sulfur is ambiguous. 118 

 119 

4.2.4 Gas Laws and the Zeroth Law of Thermodynamics 120 

The ideal gas equation is 121 

 122 

BPV nRT Nk T  ,          (4.2) 123 

 124 

where P is pressure, V is volume, T is temperature, N is the number of entities, and n is the 125 

number of moles. Equation (4.2) can be derived from what is probably the most basic application 126 

of statistical mechanics to a collection of perfectly elastic point particles (see any introductory 127 

physics or physical chemistry text). A noteworthy result of the statistical mechanical analysis is 128 

 129 
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3

2
KE nRT ,           (4.3) 130 

 131 

where KE  is the average kinetic energy per mole of particles. Equation (4.3) provides a 132 

fundamental interpretation of temperature – it is a measure of the average energy of all 133 

molecules (for an ideal gas the kinetic energy is entirely translational but in general includes 134 

vibrational and rotational degrees of freedom). This equivalence is discussed in detail in [3] and 135 

is the reason that kB is omitted from its equations. A definition of temperature was recognized to 136 

be logically necessary well after the 1
st
 and 2

nd
 laws of thermodynamics had been established and 137 

the adopted definition is thus referred to as the zeroth law of thermodynamics: ''If C is initially in 138 

thermal equilibrium with both A and B, then A and B are also in thermal equilibrium with each 139 

other. Two systems are in thermal equilibrium if and only if they have the same temperature". 140 

 Van der Waals improved the ideal gas equation by introducing two corrections: 141 

(a) The finite volume of the particles is subtracted from the volume of the particles to give  142 

 V nb , where b is an empirical constant reflecting the particle volume. 143 

(b) Attractive (van der Waals) forces between the particles reduce the gas pressure because 144 

of two factors: (i) because of particle interaction forces the average momentum per particle is 145 

reduced in proportion to  /n V , thus reducing the impulsive force per particle arising from each 146 

reflection from the walls of the container; (ii) the reduction in total momentum is proportional to 147 

the product of the reduction per particle and the number density  /n V  of particles. Thus the 148 

pressure is reduced in proportion to  2 2/n V  and this must be subtracted from P in the ideal gas 149 

expression. The result is the Van der Waals equation 150 

 151 

  2 2/P an V V nb RT   ,         (4.4) 152 

 153 

where a is another empirical constant. The latter depends in part on the polarizability α of the 154 

particles because of the theoretical van der Waals interaction (London) potential L between 155 

identical particles separated by a distance r 156 

 157 

 

2

2 6

0

3

4 4 e

hv
L

r





 
  

 
,          (4.5) 158 

 159 

where h is Planck's constant, v is the Bohr ground state orbiting frequency and hv is the energy of 160 

the Bohr ground state. An excellent heuristic derivation of the London potential has been given 161 

by Israelachvili [4] using the polarizable Bohr atom (this derivation is acknowledged to be based 162 

on an account by Tabor that is unfortunately not referenced). The Israelachvili/Tabor result 163 

differs from the exact eq. (4.5) only by the constant (1.00 rather than 0.75). 164 

 165 

4.2.5 Heat, Work and the First Law of Thermodynamics 166 

 As noted above the temperature of an ideal gas is proportional to the average kinetic 167 

energy per ideal gas particle [eq. (4.3)] ("thermal energy"). Heat (Q) is thermal energy in transit 168 
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that spontaneously flows from a system of higher thermal energy (higher T) to that of lower 169 

thermal energy (lower T). The reverse process requires an input of energy (work W) defined by 170 

 171 

 
2

1

V

V

W P V dV  .          (4.6) 172 

 173 

 The temperature of any material is a measure of its internal energy U [a generalization of 174 

eq. (4.3)] and the balance of heat transfer Q, U and work W is given by the First Law of 175 

Thermodynamics: 176 

 177 

U Q W             (4.7) 178 

 179 

that is valid for all systems. Equation (4.7) adheres to the convention that W is positive for work 180 

done on the system. An alternative convention regards W as positive for work done by the system 181 

and the sum on the right hand side of eq. (4.7) then becomes a difference. There is also more to 182 

eq. (4.7) than its algebra, because although both Q and W depend on the path taken from one 183 

state to the other their sum U is independent of the path. Path invariant functions such as U are 184 

often called state functions. 185 

 186 

4.2.6 Entropy and the Second Law of Thermodynamics 187 

 The path dependence of 
B

A

Q Q   is eliminated by dividing all heat transfers δQ by the 188 

temperature T at which each transfer occurs. The quantity δQ/T is the change in entropy dS and 189 

the state function entropy S is given by 190 

 191 
B

B

A
A

Q
S dS

T


 

  .          (4.8) 192 

 193 

Entropy is not generally conserved and actually increases for irreversible processes. Consider for 194 

example the spontaneous transfer of a quantity of heat Q from a body A at temperature TA to 195 

another body B at a lower temperature TB. The entropy of the two bodies together increases 196 

because the entropy Q/TA lost by A is smaller than the entropy Q/TB gained by B. This analysis 197 

depends of course on neither heat nor matter (with its internal energy U) entering or leaving the 198 

system consisting of A+B, and on no work being done on or by the system - the system A+B is 199 

then said to be closed or isolated. The Second Law of Thermodynamics states that for all 200 

processes taking place in a closed system the total change in entropy ΔS is greater than or equal 201 

to zero: 202 

 203 

0S  ,           (4.9) 204 
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 205 

where the equality obtains only for adiabatic and idealized equilibrium processes. 206 

 The statistical mechanics of Boltzmann yields a simple relation between the entropy S of 207 

a system and the number   of possible configurations available to the system: 208 

 209 

lnBS k  ,           (4.10) 210 

 211 

where kB is Boltzmann's constant = R/NA (although it was Planck who introduced it, not 212 

Boltzmann [5]). More probable states thus have higher entropies so that eq. (4.10) provides an 213 

interpretation of the Second Law – systems naturally migrate to states with more configurations 214 

that have a greater probability. The largest practical problem with applying eq. (4.10) is 215 

obtaining an expression for   - most often this cannot be done even for idealized model 216 

systems. None other than Einstein gave a lot of thought to eq. (4.10) as well as several other 217 

statistical mechanical matters such as fluctuations. Einstein's contributions to and analyses of 218 

statistical physics and thermodynamics are discussed in Chapter 4 (entitled "Entropy and 219 

Probability") of what this author regards as the definitive biography of Einstein [5]. 220 

4.2.7 Heat Capacity 221 

 The increase in a body's temperature dT for any given heat input δQ is determined by the 222 

body's isobaric and isochoric heat capacities Cp and Cv 223 

 224 

 

and

,

p

P

v

V

Q
C

T

Q
C

T

 
  

 

 
  

 

            (4.11) 225 

 226 

where δQ has been replaced by ∂Q to indicate that the heat transfer is directly into the body and 227 

not dependent on path before that. Heat capacities per unit mass are too often referred to as 228 

"specific heats" that is confusing and misleading (what prevents the use of "specific heat 229 

capacities"?). Heat capacity has the same units as entropy but the two are physically different: 230 

entropy is a process dependent quantity related to heat transfer at a particular temperature or a 231 

material dependent quantity related to the randomness of the material, whereas heat capacity is a 232 

material property that refers to the change in temperature for a given heat input that is 233 

independent of the randomness of the material and does not depend on how heat is input to the 234 

material. 235 

The isobaric and isochoric heat capacities differ because at constant pressure some of the 236 

heat input produces an increase in volume that does work on the environment [eq. (4.6)] and 237 

therefore reduces any increase in the internal energy U and temperature T so that p vC C  [2]: 238 

 239 
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2

0P V

T

TV
C C




   ,          (4.12) 240 

 241 

where 242 

 243 

1

P

V

V T


  
   

  
          (4.13) 244 

 245 

is the isobaric expansivity, and 246 

 247 

1
T

T

V

V P


  
  

 
          (4.14) 248 

 249 

is the isothermal compressibility. Mechanical stability demands that 0T   so that eq. (4.12) 250 

ensures p vC C  because V and T are positive definite and 2  is necessarily positive even when 251 

α is negative (supercooled water for example). It can be shown [6] that   for solids arises from 252 

odd number vibration harmonics (even numbered harmonics do not). The isobaric heat capacity 253 

Cp is usually considered in this chapter, an exception being the theoretical Debye heat capacity 254 

discussed next. 255 

 256 

4.2.8 Debye Heat Capacity and the Third Law of Thermodynamics  257 

 Quantum phenomena affect Cp(T) and Cv(T) at low temperatures. Einstein (Chapter 20 258 

of [5] entitled "Einstein and Specific Heats") was the first to apply quantum considerations to the 259 

heat capacity and thus was the first to deduce that 
0

lim ( ) 0v
T

C T


 , although his result that 260 

0
lim ( )v
T

C T T


  is quantitatively incorrect. Debye extended Einstein's result by introducing a 261 

distribution of phonon (collective vibrational quanta) energies rather than Einstein's heuristic 262 

assumption of a single energy. The Debye result for N oscillators is [6] 263 

 264 

 
 

3
4

2

0

exp( )
9

exp 1

Dx

V B

D

T x x
C T Nk dx

x

    
   

       






,      (4.15) 265 

 266 

where ΘD is the Debye temperature corresponding to a maximum cutoff energy for the 267 

distribution of phonon (vibrational quanta) energies and /D Dx T . For T → 0 the parameter xD 268 

→   and the integral in eq. (4.15) is a calculable constant so that 3

0
lim ( )v
T

C T T


 . The T
3
 269 

behavior is observed for crystalline materials but not for many glasses for which 
0

lim ( )V
T

C T T


 . 270 
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The latter has been rationalized in terms of two state models [6] but is not understood at a 271 

fundamental level because the two states are unknown. In both cases however it remains true that 272 

0
lim ( ) 0v
T

C T


  so that the entropy 
0

00 0
lim lim ln

T

v
T T

S S C d T






 
   is also zero and eq. (4.10) then 273 

implies that 1  and there is only one possible state at 0 K. This is the basis of the Third Law 274 

of Thermodynamics (originally called the Nernst Theorem), one of the best expressions of which 275 

is probably that due to Fermi [1]: 276 

"…to the thermodynamical [sic] state of a system at absolute zero there corresponds 277 

only one dynamical state of lowest energy compatible with the given crystalline 278 

structure, or state, or state of aggregation of the system". 279 

Immediately after that definition Fermi adds an important comment: 280 

"The only circumstance[s] under which Nernst's theorem might be in error are those for 281 

which there exist many dynamical states of lowest energy [i.e. degeneracy]. But even in 282 

this case the number of states must be enormously large (of the order of exp( )N …) if 283 

the deviations from the theorem are to be appreciable. Although it is not theoretically 284 

impossible to conceive of such systems, it seems extremely unlikely that such systems 285 

actually exist in nature". 286 

Some sort of "ideal glass" with an energy degenerate number of configurations much fewer than 287 

exp( )N  at 0 K is perhaps a candidate for a "not theoretically impossible" state. Also, a peak in 288 

the low temperature glassy heat capacity is sometimes observed in excess of the Debye T
3
 289 

behavior, known as the boson peak. Its origins are not yet understood but it is known to change 290 

with thermal history including annealing. Its occurrence points to low energy excitations that 291 

may also be candidates for the "not theoretically impossible states" mentioned by Fermi. 292 

 293 

4.3   Thermodynamic Functions 294 

4.3.1 Entropy S 295 

 296 

Q
dS

T


 .           (4.16) 297 

 298 

As with eq. (4.7) there is more to equation (4.16) than just the algebra. The use of δQ rather than 299 

dQ indicates that as noted in §4.2.2.4 the total heat 

B

A

Q  transferred to or from the system from 300 

state A to state B is path dependent, but dS is used for entropy because the total entropy change 301 
B

A

S dS    is not path dependent. 302 

 303 

4.3.2 Internal EnergyU  304 

This is defined by eq. (4.7). In terms of the other thermodynamic functions defined here: 305 

 306 

dU TdS PdV  .          (4.17) 307 

308 
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4.3.3 Enthalpy H 309 

 Defined as 310 

 311 

   

;

.

H U PV

dH TdS PdV VdP PdV

TdS VdP

 

   

 

        (4.18) 312 

 313 

4.3.4 Free Energies A and G 314 

 Free energies are thermodynamic potentials (defined as such in [3]) because systems are 315 

driven to decrease their free energies. The Helmholtz free energy A and Gibbs free energy G 316 

correspond to isochoric and isobaric conditions respectively: 317 

 318 

,

,

A U TS

dA PdV SdT

 

  
          (4.19) 319 

 320 

.

G H TS U PV S

dG VdP SdT

    

 
          (4.20) 321 

 322 

The negative sign of the TS term in eqs. (4.19) and (4.20) signifies that systems are in part driven 323 

to equilibrium by increasing their entropy. The other term signifies that systems are also driven 324 

to decrease their energy U or H. It is the balance of these potentially conflicting drives that 325 

defines the eventual direction of a process or reaction, as illustrated by the thermodynamics of 326 

DNA helix formation: it is energetically favored by hydrogen bonding between bases but 327 

entropically expensive because it is more ordered compared with the disorder of separated 328 

strands and more disordered ambient water molecules. The coding and decoding of DNA at 329 

room temperature therefore depends on the small difference between large enthalpy and entropy 330 

factors.  331 

 332 

4.3.5 Chemical Potential μ 333 

 For a species i this quantity is denoted by μi and is needed when there are a number of 334 

different entities in a system. If this number is ni for species i then [3] 335 

 336 

, , , ,

i

i i i iP T T V S V S P

G A U W

n n n n


          
          

          
.      (4.21) 337 

 338 

Which derivative is chosen depends on the variables in which μi is to be expressed – for example 339 

if G is chosen the variables are {P, T} and if A is chosen the variables are {V, T}. The entities 340 

can be atoms, molecules, ions, even electrons. For charged entities the electrostatic potential 341 

iz e  must be added to μi to give the electrochemical potential E

i  342 

 343 
E

i i iz e              (4.22) 344 
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 345 

(zi is the charge on the entity i in electron charges, e is the (positive) electron charge, and φ is the 346 

electrostatic potential). In solid state physics E

i  is the Fermi energy 
F  of electrons. 347 

 348 

4.3.6 Internal Pressure 349 

Defined as  /
T

T S V   and motivated by 350 

 351 

.
T T

U S
dU PdV TdS P T

V V

  
        

  
      (4.23) 352 

 353 

4.3.7 Derivative Properties 354 

Properties that are defined in terms of the first or second derivatives of free energy with 355 

respect to temperature, pressure or volume are often referred to as first or second order functions. 356 

For example 357 

 358 

,
S T

H G
V

P P

    
    

    
         (4.24) 359 

 360 

,
S T

U A
P

V V

    
     

    
         (4.25) 361 

 362 

and 363 

 364 

V P

A G
S

T T

    
     

    
         (4.26) 365 

 366 

are first order functions and Cp eq. (4.11), Cv eq. (4.11), α eq. (4.13), and κT eq. (4.14) are second 367 

order functions. In addition to eq. (4.12) the difference between pC  and VC  is also given by 368 

 369 

 
P V V V

P P P

PVH U
C C C C

T T T

     
         

       
.     (4.27) 370 

 371 
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4.4   Maxwell Relations 372 

 The Maxwell relations relate the derivatives of various thermodynamic functions. For 373 

example 374 

 375 

,
S V

T P

V S

    
    

    
          (4.28) 376 

 377 

,
S P T V

T V S P

P S V T

          
         

          
       (4.29) 378 

 379 

.
T P

S V

P T

    
    

    
          (4.30) 380 

 381 

Other relations can be obtained from other applications of differential forms. For example  382 

2

2

p

T

C V
T

P T

   
    

   
,          (4.31) 383 

 384 

obtained from 385 
 386 

2
p

p

T

CS S
C T T

T P P T

     
      

       
        (4.32) 387 

 388 

so that 389 

 390 

2 2

2

T P P

S V S V

P T P T T

         
          

           
.       (4.33) 391 

 392 

Another example is [2] 393 

 394 

T P

H V
V T

P T

    
    

    
.         (4.34) 395 

 396 
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 Many other relations can be derived from the Jacobeans (§1.6) arising from changes in 397 

thermodynamic variables. A summary of these formulae is given in [2]. 398 

4.5   Fluctuations 399 

 Thermodynamic functions F are defined by averages F  over large numbers of entities. 400 

These averages have corresponding variances 2F  and standard deviations 
1/2

2F  that are 401 

referred to as "fluctuations". These fluctuations are sometimes related to thermodynamic 402 

functions. For example [3] 403 

 404 
2

B pk C S             (4.35) 405 

 406 

and 407 

 408 

2

Bk TV V   .          (4.36) 409 

 410 

4.6   Egodicity and the Deborah Number 411 

 Egodicity is a statement about the equivalence of probabilities in terms of time averages 412 

and various ensemble averages in statistical mechanics. The ensembles are distinguished by their 413 

variables: canonical (n, V, T), micro-canonical (n, V, U), and grand canonical (μ, V, T). The 414 

essence of ergodicity is illustrated by a simplified traffic analogy. For the analogy to be good it is 415 

required to assume that all drivers on the road behave the same (much less likely than assuming 416 

all molecules act alike). Consider the probability of a driver doing something such as turning 417 

with no turn signal to indicate intent ("event" hereafter). There are two ways to evaluate the 418 

probability that such an event will occur: 419 

(i) Observe traffic behavior in a restricted area (a county say) for a "very long time" and find 420 

the probability that the event occurs. A "very long time" can be defined as the minimum 421 

observation time for which longer observation times would not change the probability. 422 

(ii) Observe all traffic patterns over the country for an "instant" and average them to obtain 423 

the probability of no turn signals. 424 

The ergodic hypothesis asserts that these two probabilities are the same. However if the 425 

time of observation in (i) is too short to include all possibilities then ergodicity is said to be 426 

broken and the time average will be incorrect. This occurs in the glassy state where relaxation 427 

times of years or even millennia are confidently estimated and longer observation times are 428 

impractical. The glass transition phenomenon is correctly said to be "ergodicity breaking" but it 429 

is incorrect to assert that ergodicity breaking is equivalent to a glass transition (see discussion of 430 

the Deborah Number below and the article by Angell [7]). Such assertions ignore the details and 431 

subtleties of the glass transition phenomenon. 432 

A rigorous discussion of ergodicity is given in [5] (Chapter Four "Entropy and 433 

Probability") from which the following is distilled. Two definitions by Boltzmann are discussed. 434 

The first, dating from 1868, considers the evolution in time of a closed system of N particles in 435 

orbit on a surface of constant energy in 6N-dimensional space. A particular state Si then 436 

corresponds to a point i on the orbit. Now observe the system for a long time T and determine the 437 
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time Ti for which it is in the state Si. Then  lim /i
T

T T


 is the probability that the system is in state 438 

Si. Einstein independently introduced the same definition in 1903 and was his favored definition. 439 

Boltzmann's second definition was to calculate the number of ways w of partitioning ni particles 440 

each with energy 
i  under the constraints that the total energy i iE n   and iN n  are 441 

fixed and (crucially) that the particles are in practice distinguishable (not so quantum 442 

mechanically). Boltzmann then proposed that w was proportional to the probability of any 443 

distribution of {ni} values. The first definition is in principle observable but the second is, in 444 

Pais's words [5], "more like a declaration". Ergodicity asserts that Boltzmann's two definitions 445 

are equivalent but as Pais has stated "This [equivalence] is the profound and not yet fully solved 446 

problem of ergodic theory". 447 

The Deborah number DN [8] is defined as the ratio of the characteristic timescale of the 448 

observed system (typically a relaxation time) and of the measurement timescale. For an applied 449 

sinusoidal perturbation an appropriate timescale of observation is the period of oscillation. The 450 

glass transition occurs when the DN passes through unity with changing temperature – for 451 

example during rate cooling through the glass transition temperature range (abbreviated by "Tg" 452 

as noted in §4.1). Above Tg relaxation times are less than about 100 s and longer observation 453 

times are easily achieved. Relaxation times of years or even millennia are confidently estimated 454 

below Tg so observation times are then necessarily much smaller. The DN is also usefully 455 

defined as [8] 456 

 457 

c

d d dT d
DN Q

dt dT dt dT

      
      

    
,        (4.37) 458 

 459 

where Qc is the cooling rate (the heating rate is not recommended because for DSC scans the 460 

kinetics of recovery are partly determined by the previous thermal history (see [8] for details). 461 

 462 

4.7   Phase Transitions 463 

 These are transitions between different states (phases) of a material (e.g liquid and solid). 464 

A useful classification scheme for them was introduced by Ehrenfest who proposed that 465 

discontinuous changes in a property defined by the n
th

 derivative of a thermodynamic potential 466 

(free energy A or G) be termed an n
th

 order transition. Thus melting and boiling for which first 467 

order properties such as V, H and S are discontinuous are 1
st
 order transitions. Transitions for 468 

which second order properties such as the heat capacity Cp or Cv, expansivity  , or 469 

compressibility   are discontinuous are 2
nd

 order transitions, and so on. The Ehrenfest 470 

classification is imperfect – for example λ transitions in metal alloys are referred to as second 471 

order transitions but do not fall into Ehrenfest's classification (but could perhaps be 472 

approximated as Ehrenfest third order transitions). In any event it is useful to discuss the glass 473 

transition phenomenon in terms of an Ehrenfest 2
nd

 order transition. 474 

If the glass transition is regarded as an Ehrenfest 2
nd

 order transition then its pressure 475 

dependence can be derived for different thermodynamic functions that are used to define the 476 

glass transition, using elementary calculus. These thermodynamic relations are applied both 477 

below and above the transition temperature range and the difference between them is denoted by 478 

Δ. Thus ΔV = ΔH = ΔS = 0 because the transition is not first order but their first derivatives are 479 
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not zero because by definition an Ehrenfest 2
nd

 order transition exhibits discontinuities in these 480 

derivatives.  481 

For volume 482 

 483 

 0 T

P T

V V
d V dT dP V dT dP

T P
 

    
         

    
     (4.38) 484 

 485 

from which 486 

 487 

2 T

V

T

P





  
 

  
,          (4.39) 488 

 489 

where eqs. (4.13) and (4.14) for   and T  have been used. Deviations from eq. (4.39) have 490 

often been reported for Tg=T2 (see §4.8.3.3), but O'Reilly [9] has pointed out that T  is 491 

strongly pressure dependent and that reasonable values can be found for it that agree with eq. 492 

(4.39). 493 

For enthalpy 494 

 495 

0p

P T P

H H V
d H dT dP C dT V T dP

T P T

        
              

        
   (4.40) 496 

 497 

but since 0V   then 498 

 499 

2

H p

T
VT

P C

  
 

  
.          (4.41) 500 

 501 

For entropy 502 

 503 

 

1

0
P T P T

p

S S S V
d S dT dP dT dP

T P T T

T C dT V dP

          
            

          

   

    (4.42) 504 

 505 

so that  506 
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 507 

S p

T
VT

P C





  
 

  
.          (4.43) 508 

 509 

Note that eqs. (4.41) and (4.43) are the same. 510 

In anticipation of the nonlinear Adam-Gibbs model for structural relaxation discussed in 511 

§4.8.3, an expression for 
2 /T P   based on TSc being constant is now given. The condition that 512 

TSc be constant implies 513 

 514 

 

 

0c c c

p c

p c

d TS TdS S dT

C dT TV dP S dT

C S dT TV dP





  

    

    

        (4.44) 515 

 516 

so that 517 

 518 

2

cTS p c

T
VT

P C S

  
 

   
.         (4.45) 519 

 520 

 The Prigogine-Defay ratio   is defined by 521 

 522 

 

   

2

2

2

/

/

p TV

S

T P C

T P TV









   
  

  
.        (4.46) 523 

 524 

It has been shown by Davies and Jones [10] that if 1   then more than one thermodynamic 525 

variable must determine the transition. Values of 1   for T2 = Tg have often been reported but 526 

McKenna [11] has suggested that the usually quoted values of Δα, ΔκT and ΔCp are not obtained 527 

under the proper conditions and that if they were then   could be unity within uncertainties. If 528 

one variable is chosen for convenience to determine relaxation behavior then entropy is evidently 529 

better than volume because entropy and enthalpy can accommodate things that volume cannot, 530 

such as bond angle constraints and stresses that are known to affect glassy state relaxation rates 531 

and are presumably factors in liquid relaxation as well. 532 

4.8 Structural Relaxation 533 

An excellent account of this topic is given by Angell et al. [12] that lists questions that 534 

need answering and the then current best answers (essentially unchanged to this day). It also 535 

considers other topics such as ionic conductivity in glasses that are discussed in Chapter Two of 536 

this book. The present section is divided into three segments arranged according to three 537 
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temperature ranges relative to Tg: (1) T > Tg (supercooled liquids); (2) T < Tg (glasses); (3) T   538 

Tg (glass transition). 539 

4.8.1 Supercooled Liquids and Fragility 540 

 Supercooled liquids are precursors to glasses formed by cooling through the glass 541 

transition temperature range and their properties are therefore relevant to structural relaxation. 542 

Relaxation times in supercooled liquids (as well as many liquids above the melting temperature) 543 

rarely conform to the Arrhenius temperature dependence 544 

 545 

 0 exp a
A

E
T A

RT


 
  

 
,         (4.47) 546 

 547 

where Ea is the Arrhenius activation energy and AA is a constant. Instead they generally adhere to 548 

relations that are often well approximated by the Fulcher equation (see [13] for an excellent 549 

discussion of its history and [14] for a reprint of the original paper): 550 

 551 

 0

0

exp F
F

B
T A

T T


 
  

 
,         (4.48) 552 

 553 

where AF, BF and T0 are positive constants independent of temperature but material dependent. 554 

The effective Arrhenius activation energy Eeff for the Fulcher relation is 555 

 556 

   
0

2

0

ln

1/ 1 /

eff F
E d B

R d T T T

    
     

      

.        (4.49) 557 

 558 

Other expressions for  0 T  are discussed in [12] but we select just one here for further 559 

discussion because it is frequently used in the polymer community – the WLF equation: 560 

 561 

 

 

 

 
1

10 10

2

*
log log

* *
T

T C T T
a

T T T C





  
  

     
,       (4.50) 562 

 563 

where T* is a reference temperature that is usually equated to the glass transition temperature Tg 564 

and C1 and C2 are "constants" (that depend on T* however). The parameters C1 and C2 are 565 

related to the Fulcher parameters BF and T0 by 566 

 567 

0 2*T T C             (4.51) 568 

 569 

and 570 

 571 

1 22.303FB C C ,          (4.52) 572 
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 573 

where the factor 2.303 arises from the irritating use of log10 rather the natural ln. Equations 574 

(4.51) and (4.52) indicate why C1 and C2 are T* dependent: T0 is an objective measure of 575 

departure from Arrhenius behavior [eq. (4.49)]. The value of C1 for T* = Tg is "universally" 576 

about 17 for polymers but C2 is material dependent. 577 

A fruitful characterization of supercooled liquids is the classification scheme of fragility 578 

introduced by Angell. This scheme has been developed over many publications and is not 579 

amenable to a definitive citation (although [15,16] are useful and [17] includes a list of 580 

references). Reference [17] criticizes some mathematical issues related to fragility but these 581 

criticisms do not detract from the overall value of the concept. 582 

There are two complementary definitions of fragility, thermodynamic and kinetic, that 583 

reflect the intricate and debated relation between the thermodynamic and kinetic aspects of the 584 

glass transition phenomenon (such a relation is the basis of the Adam-Gibbs model [18] 585 

discussed below). The thermodynamic definition is the origin of the term fragility and defines it 586 

in terms of the isobaric heat capacity change  p gC T  over the glass transition temperature 587 

range: large values of  p gC T  imply large increases in the configurational entropy with 588 

increasing temperature above Tg, that in turn implies large decreases in structural order and 589 

therefore a more fragile structure. The kinetic definition of fragility is essentially a quantitative 590 

statement of the generally observed positive correlation between  p gC T  and the departure 591 

from Arrhenius behavior of  0 T , the latter often being well described by the Fulcher equation. 592 

The kinetic definition was originally expressed in terms of the Fulcher equation but it has since 593 

been more generally defined in terms of a fragility parameter m that is essentially a Tg-scaled 594 

effective Arrhenius activation energy at Tg that is independent of the form of  0 T : 595 

 596 

 

 
10 0log

/
g

eff

gg
T T

Ed
m

RTd T T





  .         (4.53) 597 

 598 

This corresponds to the slope at T = Tg of the "Angell plot"  10 0log   versus /gT T . The limiting 599 

values of 0  are determined by the plausible boundary conditions 2

0 10   s at  / 1g gT T T T   600 

and 14

0 10   s (vibrational lifetime) as  / 0gT T T  . The minimum value mmin of the 601 

fragility index is obtained from the slope of the Angell plot obtained by connecting the two 602 

limiting values of 0  with a straight (Arrhenius) line. For the boundary conditions given above 603 

 604 

 
 

0

min 10log 2 14 16
g

A

T
m

A

 
     

  

.       (4.54) 605 

 606 

The quantity AA in eq. (4.54) refers specifically to the Arrhenius equation (4.47), and not to any 607 

other equation for  0 T  that has a pre-exponential factor (AF in eq. (4.48) for example) that is 608 
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too often just termed A in the literature and can be confused with AA. To ensure that the argument 609 

of the logarithm function is explicitly dimensionless the following modified form is useful: 610 

 611 

 

 
 10 0log /

' 0 / 1
/

g

A

g

g
T T

d A
m T T

d T T





   .      (4.55) 612 

 613 

Equation (4.55) provides a mathematically direct derivation of mmin by simply demanding that 614 

the derivative in eq. (4.55) be independent of temperature. Angell [19] has described how mmin 615 

predicts the "universal" WLF parameter C1≈17. 616 

 The thermodynamic and kinetic definitions of fragility are equivalent according to the 617 

Adam-Gibbs (AG) [18] model for liquid state transport properties. This model gives rise to 618 

equations that are almost indistinguishable from the Fulcher equation in many cases 619 

and for   /pC T C T   (see below) it  reproduces the Fulcher equat ion exactly. The 620 

ease with which this equation can be extended through the glass transition to the glassy 621 

state was quickly recognized by Macedo and Napolitano [20], Goldstein [21], Plazek 622 

and Magill [22], Magill [23], and Howell et al. [24], but was not used explicitly for enthalpy 623 

relaxation until the pioneering work of Scherer [25] and in later studies by Hodge [26]. 624 

The AG model is based on transition state theory and the hypothesis that a 625 

temperature dependent number of moieties need to rearrange cooperatively for relaxation 626 

to occur. The transition state activation energy AE  is approximated by 627 

 628 

AE z   ,            (4.56) 629 

 630 

where   is an elementary excitation energy per moiety and z is the number of moiet ies 631 

that cooperatively rearrange. The linear addition of   for each moiety implicitly 632 

assumes that the moieties do not interact and this has been challenged by Ngai et al. 633 

who have proposed an alternative "coupling model"  [27]. Only the minimum value z* of z 634 

significantly contributes to the relaxation time [18] and its value is assumed to be a 635 

funct ion of temperature derived by simplistically equat ing two expressions for the 636 

configurational entropy per moiety 637 

 638 

 

 

*

*

c c

A

S T s

N z T
 ,          (4.57) 639 

 640 

where  cS T  is the macroscopic configurational entropy (defined in eq. (4.59) 641 

below), NA is Avogadro's number, and *

cs  is the configurational entropy associated with the 642 

smallest number of particles capable of rearrang ing (often taken to be ln 2Bk  because of the 643 

two configurations before and after rearrangement). Thus 644 

 645 
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exp exp exp A cA
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B B c

z T N sE
A A A

RT k T k TS T

 


    
             

,    (4.58) 646 

 647 

where a pre-exponent ia l factor   
1

1 exp / Bk T


     has been equated to unity 648 

because typically Bk T  . The result that configurational entropy is the fundamental 649 

property that determines the rate of relaxation is plausible because if more 650 

configurations are available then relaxation can be expected to be faster. 651 

The quantity Sc(T) is given by 652 

 653 
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 

 
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' ' ln '
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T
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p

c p

T
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C T
S T dT C T d T
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
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



 ,      (4.59) 654 

 655 

where (i)      p pe pgC T C T C T    and  peC T  and  pgC T  are the equilibrium 656 

(liquid) and glassy heat capacities respectively; (ii) T2 is the temperature at which 657 

Sc(T) is zero, denoted as such to  dist ingu ish it  from the thermodynamic Kauzmann 658 

temperature TK discussed below (their  possible equalit y needs to  be established  659 

exper imentally rather  t han simply assert ed) .  Assessment of  pC T  is not trivial. It 660 

must  be obtained by extrapolations of Cp(T) that are necessarily uncer t ain in par t  661 

because  the g lassy heat  capacit y Cp g(T)  must  be obtained at temperatures well 662 

below Tg to ensure that relaxat ion effects are not included in its temperature 663 

dependence, so that long extrapolations are required. Huang and Gupta [28] have 664 

evaluated expressions for Cp g(T)  suitable for extrapolation into and above the glass 665 

transit ion temperature range for a soda lime silicate glass. The function ΔCp(T) also 666 

depends on how Cpl is extrapolated. It is common to assume that ΔCp(Tg) is totally 667 

configurational but this has been challenged by Goldstein [29,30] who has argued 668 

that  it  may contain significant contributions from vibrational and secondary relaxation 669 

sources. It is however possible that such non-configurational contributions to ΔCp(T) could 670 

also contribute to "Sc" in the AG model so that using  pC T  regardless of its origin could still 671 

be valid. The default position adopted here is that indeed all the contributions to  p gC T  of 672 

whatever type contribute to structural relaxation. 673 

T h e  A G  f u n c t io n  f o r   0 T  d e p e n d s  o n  t h e  f u n c t io n a l  f o r m o f  674 

Δ C p ( T ) . For 675 

 676 

constantpC C             (4.60) 677 

 678 

the "AGL" function for the structural relaxation time is 679 

 680 
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 
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 682 

where 683 

 684 
*

B

A c
AGL

N s
B

k C


 .          (4.62) 685 

 686 

Equation (4.61) is almost indist inguishable from the Fulcher equation and in fact 687 

retaining only the first term in the expansion of the logarithmic term reproduces the 688 

Fulcher form. The expression 689 

 690 

  ' /p gC T C T T            (4.63) 691 

 692 

implies 693 

 694 

     2 21 / /c g gS T C T T T T T           (4.64) 695 

 696 

so that 697 
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 700 

i.e. the Fulcher form is recovered with 701 

 702 

 
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
.          (4.66) 703 

 704 

As noted in [8] eq. (4.63) has a stronger temperature dependence than that observed 705 

for most polymers, according to plots of the data compiled in [31]. However since eqs. 706 

(4.61) and (4.65) are almost indistinguishable the AG model can probably accommodate most 707 

approximations to the Fulcher equation that are found experimentally [32,33]. 708 

Equations (4.57) and (4.64) imply that z* is proportional to  21/ 1 /T T . Thus 709 

z* and the barr ier height *z   diverge as 2T T  and simplistically this divergence 710 

can be expected to prevent Tg approaching T2 [26,34], (assuming that T2 is indeed some 711 

sort of ideal Tg). Since z* is conceivably associated with some form of correlation length 712 

it is of interest that the correlation length computed from a random field Ising model also 713 

diverges as  1 /cT T


 [35], although no evidence for a correlation length was 714 
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observed in a viscosity study of glycerol by Dixon et al. [36] nor in a molecular 715 

dynamics simulation by Ernst et  al.  [37]. On the other hand if z* is interpreted in 716 

dynamic terms, for example as the minimum number of part icles needed for the 717 

ensemble averaged time correlation function to be independent of size, it would not 718 

necessarily be seen structurally ("dynamic heterogeneity") . It is also possible that z* 719 

corresponds in some way to the "dynamic characterist ic length" defined by the rat io of 720 

the frequency of the Raman "boson" peak to the speed of sound [38,39]. Adam-Gibbs 721 

behavior has been observed in a spin facilitated kinetic Ising model described by 722 

Frederickson [40] and as noted above the AG equat ion has also been extended through the 723 

glass transition to the glassy state (discussed in §4.8.3). 724 

 The assertion made above that the kinetic and thermodynamic definitions of 725 

fragility are made physically consistent by the AG model can now be explained. Since Sc 726 

is more strongly temperature dependent for greater ΔCp(Tg) (greater thermodynamic 727 

fragility) eq. (4.58) indicates that the structural relaxation time has a more non-Arrhenius 728 

temperature dependence and larger m [eq. (4.53)] (greater kinetic fragility). 729 

 730 

4.8.2  Glassy State Relaxation 731 

Because glasses are usually in a nonequilibrium state they isothermally relax 732 

towards the equilibrium state (metastable with respect to the crystalline phase however). A 733 

discussion of this phenomenon has been given elsewhere [8]. There are two canonical 734 

aspects of glassy state relaxation kinetics that need to be considered – nonexponentiality 735 

and nonlinearity. The former is a characteristic of relaxation in essentially all condensed 736 

media (water is an exception as usual) and has been discussed extensively in Chapter 1. 737 

Nonlinearity is absent for most relaxation phenomena, but for structural relaxation 738 

nonlinearity cannot be ignored for even small perturbations. It is responsible for several 739 

observed phenomena, such as glassy state relaxation occurring on human lifetime scales 740 

rather on inhuman scales of centuries or longer [41] for example. Experimental evidence 741 

for nonlinearity in glassy state relaxation is exemplified by the creep data of Struik [42] 742 

that are reproduced in [41]. Creep is essentially a quantitative measure of the fractional 743 

increase in length with time of a vertically suspended small diameter thread of material 744 

that has a hanging weight on it. The Struik data were recorded for time intervals that were 745 

about 10% of the annealing times ta. The creep curves moved to longer times with 746 

increasing ta but the shape of each creep curve was essentially the same for all ta - thus the 747 

characteristic relaxation time increased with ta. A good description of the increase in 748 

relaxation time τ0 with ta was given by the Struik relation 749 

 750 

0 aKt  ,           (4.67) 751 

 752 

where K has the dimensions of 1t   and is dependent on material and annealing 753 

temperature. The quantity 0 1   is an empirical parameter referred to here as the Struik 754 

shift parameter. The nonlinearity of relaxation expressions that contain eq. (4.67) (and 755 

other relations that are discussed below) is eliminated by the reduced time defined by 756 

[43,44] 757 
 758 
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 764 

For example the nonlinear WW function is [8] 765 
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 (4.70) 766 

 767 

where 768 

 769 

' 1              (4.71) 770 

 771 

and 772 

 773 

 
 1/ 1

0 0' 1


  


  .          (4.72) 774 

 775 

The mathematical equivalence of the linear and nonlinear WW equations exhibited in eq. 776 

(4.70) has engendered many published analyses that are physically unreasonable because 777 

in the name of "simplicity" they invoke the linear WW equation in situations that demand 778 

the consideration of nonlinearity, such as glassy state relaxation for which the Struik 779 

relation eq. (4.67) was originally observed experimentally. Some of these incorrect 780 

analyses are cited as refs. 53-60 in [8]. 781 

 Quantification of nonlinearity for temperature dependent phenomena is simplified 782 

by defining a good metric for the nonequilibrium state. The fictive temperature Tf 783 

introduced by Tool [45-47] is such a metric. It was originally suggested in an oral 784 

presentation in 1924, so that nonlinearity was recognized as being important to structural 785 

relaxation well before nonexponentiality was. Ironically Tool's analysis was for silicate 786 

glasses that are now known to have some of the least nonlinear structural relaxation 787 

kinetics. Qualitatively Tf is the temperature at which some nonequilibrium property 788 

(volume, enthalpy, entropy, relative permittivity, etc.) of a material would be the 789 

equilibrium one, and is typically different for different properties of the same sample of 790 

material. Since Tf can be associated with any property the phenomenologies described 791 
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below can be applied to any property. For enthalpy H, whose relaxation phenomenology is 792 

representative of all properties, Tf is defined by 793 

 794 

     ' '

fT

e f pg

T

H T H T C T dT   ,        (4.73) 795 

 796 

where He(Tf) is the equilibrium value of H at Tf and Cpg(T') is the temperature dependent 797 

isobaric heat capacity of the glass. Equation (4.73) is illustrated in [8] and its temperature 798 

derivative is (using eq. 1.18) 799 
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 802 

where    
1

2

1
1 /

g g
g T T T x

 
    is the normalized heat capacity. It is often assumed that 803 

 / 1/
gT

df d T  but this is unjustified in general [48,49(Sindee Simon)]. 804 

 For polymers nonthermal perturbations such as mechanical stresses (shear and 805 

tensile), hydrostatic pressure, and vapor induced swelling followed by rapid desorption, 806 

all decrease the average isothermal structural relaxation time in the glasses. Accounts of 807 

these effects are given in [8,50,51] that include many references to original publications 808 

on the effects of nonthermal perturbations on enthalpy relaxation in particular. 809 

Applications of the TNM phenomenology to these histories [50] often approximate 810 

applied stresses and pressure as isothermal changes in fictive temperature. An instructive 811 

example is the formation of "pressure densified polystyrene" by cooling the sample 812 

through the glass transition temperature range under hydrostatic pressure and then 813 

releasing the pressure in the glassy state (typically at room temperature). The resultant 814 

glass has a higher density and enthalpy than that prepared by cooling under ambient 815 

pressure and has a shorter structural relaxation time. The fact that relaxation is faster at a 816 

smaller volume is inconsistent with the free volume models frequently used by polymer 817 

physicists [52] but is consistent with enthalpy/entropy models such as Adam-Gibbs. 818 

 819 

4.8.3  The Glass Transition 820 

4.8.3.1  Introduction 821 

This vast subject is the focus of two excellent books by Donth [53,54] and at least 822 

three reviews [7,8,41], and its applications to material science have been well described 823 

by Scherer [55]. This section mainly considers the relaxation aspects of the glass 824 

transition phenomenon, although a brief general overview of it is given to provide a 825 

context for the relaxation phenomenology. In particular the intricate and still debated link 826 
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between thermodynamics and kinetics for the observed glass transition phenomenon is 827 

discussed. 828 

 The glass transition is not understood at a fundamental level. When asked at the 829 

end of the 20
th

 century about the most important challenges awaiting 21
st
 century science, 830 

Nobel laureate Philip Anderson stated in Science [56] that "The deepest and most 831 

interesting unsolved problem in solid state theory is probably the theory of the nature of 832 

glass and the glass transition. …". He had earlier stated in Physics Today (1991) "… Glass 833 

itself remains one of the deepest puzzles in all of physics." This author's opinion is that 834 

new mathematics will be required before this puzzle is solved. 835 

 836 

4.8.3.2  Glass Transition Temperature 837 

 The phrase "glass transition temperature" is a misnomer because, as noted above 838 

(§4.8.1), the transition from a liquid (relaxation time << observation time) to a glass 839 

(relaxation time >> observation time) during cooling and heating occurs over a range of 840 

temperature. Thus the glass "transition" is not a transition in the traditional sense but 841 

rather a phenomenon that in many cases occurs over an unexpected and thus far 842 

theoretically unexplained narrow temperature range. Nonetheless an ASTM publication 843 

[57] compiles several contributions to a session on definitions of the glass transition 844 

temperature of which the contribution by Moynihan [58] is most relevant here. The ASTM 845 

specification for Tg by DSC (described below) is published at 846 

www.astm.org/Standards/E1356.htm. An excellent account of the physics of the glass 847 

transition as a condensed matter phenomenon is given in Angell's review article [7].  848 

 There are three basic definitions of a DSC "Tg" that are in common use, all of 849 

which should (but not often enough) include a specification of scan rates (cooling and 850 

heating). Cooling rate is more important but for glasses formed at unknown cooling rates 851 

or by vapor deposition, or by other nonthermal processes, only the heating rate is known 852 

but nevertheless should still be specified. The three definitions are: 853 

 854 

(a) Midpoint.  The center of the transition temperature range. 855 

(b) Onset.  The temperature at which departure from the glassy heat capacity first 856 

occurs in a DSC heating scan. It is often determined by drawing a tangent line through the 857 

point of inflection of Cp(T) and taking Tg to be the temperature at which this line intersects 858 

the extrapolated glassy heat capacity. It typically corresponds to the temperature at which 859 

the excess heat capacity over that of  pgC T  is 5 – 10% of ΔCp(Tg). 860 

(c) Glassy Fictive Temperature (no annealing). Computed from integration of the heat 861 

capacity. This is the best definition but also the least convenient. It typically has a similar 862 

value to the onset definition if the heating and cooling rates are comparable. 863 

As noted the first two definitions apply to both cooling and heating but values from 864 

cooling data are preferred. One reason for preferring cooling is that heat capacity 865 

overshoots and a strong dependence on the TNM nonlinearity and nonexponentiality 866 

parameters x and β (see below) make the heating data more dependent on material and 867 

thermal history [8]. 868 

As illustration of this issue consider the question "what is 'Tg' for an annealed glass 869 

compared with a non-annealed glass?" The answer depends on how Tg is defined. As just 870 

noted the best definition of Tg is the glassy state value of the fictive temperature Tf' and 871 

http://www.astm.org/Standards/E1356.htm
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this decreases with annealing. However upon reheating enthalpy recovery occurs at higher 872 

temperatures because of nonlinearity – the lower glassy fictive temperature lengthens the 873 

starting average relaxation time so that higher temperatures must be reached before the 874 

average relaxation time becomes short enough for relaxation back to equilibrium to occur. 875 

The heat capacity increase from glassy values to liquid values upon heating therefore 876 

begins at a higher temperature and the midpoint and onset definitions of Tg increase. 877 

 The value of "Tg" that has been discussed above is generally not of great 878 

importance to the detailed kinetics of structural relaxation because the temperature 879 

dependencies of structural relaxation times scale with Tg and the value of Tg simply shifts 880 

the transition range along the temperature axis. An exception to this is that annealing 881 

behavior at temperature Ta is a strong function of Tg–Ta. Another exception is the 882 

composition dependence of "Tg" for binary mixtures of materials with very different 883 

values of Tg (polymer/solvent mixtures for example). The dependence of Tg on the 884 

concentration c of the lower Tg component is often well described by 885 

 886 

   0 expg gT c T kc
  

 
,         (4.75) 887 

 888 

where 0

gT  is the higher value of Tg and k and β are empirical constants. Equation (4.75) 889 

was discovered and used by the present author in 1989 [59] without knowledge of the 890 

papers by Phillies et al., the first of which was published in 1985 [60]. The latter paper 891 

also discussed power laws for molecular weight and probe radius for light scattering that 892 

are subsumed into k in eq. (4.75). 893 

 894 

4.8.3.3  Thermodynamic Aspects of the Glass Transition 895 

The isobaric heat capacity of a supercooled liquid exceeds that of the crystal at 896 

the same temperature so that the excess entropy of a liquid over that of the crystal 897 

decreases with decreasing temperature. Extrapolations for many materials suggest  that 898 

this excess entropy would vanish at a temperature well above abso lute zero. At this 899 

temperature the entropy of the supercooled liquid equals that of the crystal and if the 900 

same trend were to extend down to abso lute zero the entropy of the liquid would be 901 

less than that of the crystal, in conflict with the third law of thermodynamics. This 902 

difficulty was first recognized by Kauzmann [61] and the extrapolated temperature at 903 

which the supercooled liquid and crystal entropies become equal is known as the 904 

Kauzmann temperature TK. The extrapolation is often referred to as the Kauzmann 905 

"paradox" because it seems paradoxical that the intervention of a kinetic event, the 906 

observed glass transition, averts rather than resolves a thermodynamic impossibility. The 907 

value of TK is calculated by equating the excess entropy of the liquid over that of the 908 

crystal to the entropy of melting ΔSm 909 
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where Tm is the melting temperature. The uncertainty in TK is large mainly because ΔCp(T) 913 

is obtained by extrapolation but also in part because of possible different crystal 914 

forms with different values of Tm and ΔSm. For some polymers the uncertainty is even 915 

larger because of the need to correct for tacticity and partial crystallinity. As noted 916 

above (§4.8.2) Goldstein [29,30] has argued that  ΔCp(T) is probably not  entirely 917 

configurational and may contain significant contributions from vibrational and secondary 918 

relaxation sources. He estimated that between 20 and 80% of ΔCp(T) could originate from 919 

non-configurat ional sources and noted that this renders even more uncertain the 920 

extrapolations required to assess TK. However, as noted in the discussion of the Adam-921 

Gibbs model (§4.8.1), it  is possible that all contributions to ΔCp(T) contribute to the 922 

relaxation kinetics so that how ΔCp is partitioned is irrelevant. In any event calculated 923 

values of TK are always found to be less than Tg although in some cases the difference 924 

can be as small as 20 K [62,63]. The value of TK is often close to T0 of the VTF equation 925 

[64], suggesting again that the kinetic and thermodynamic aspects of the glass transition are 926 

related. 927 

Three resolutions of the thermodynamic difficulties imposed by TK>0 have been 928 

suggested. One is that the extrapolation of excess entropy to low temperatures has no 929 

firm basis and that the prediction TK>0 is a spurious result of inappropriate 930 

extrapolation [65,66]. As noted already, however, the extrapolation is only 20 K or so for 931 

some materials and a nonzero TK seems almost certain in these cases. There is also the 932 

possibility that the heat capacity decreases rapidly to nearly zero rather than 933 

mathematical zero at a temperature where the entropy is also small but nonzero. These 934 

ideas are quantified in the next paragraph about a possible Ehrenfest  2
nd

 order 935 

transition resolving the Kauzmann problem.  936 

A second resolution, suggested by Kauzmann himself [61], is that the extrapolation is 937 

irrelevant because the thermodynamic driving force for crystallization would always 938 

intervene before the entropy problem manifested itself. However this intervention has 939 

been shown to be extremely unlikely in some systems [67], and it may actually be 940 

impossible in two  bizarre syst ems (CrO 3 -H2 O [68]  and RbAc–H20 [69]) for which 941 

Tg exceeds the (extrapolated) eutectic temperature (the Kauzmann analysis can be 942 

applied to eutectic mixtures [67]). Also, a specific thermodynamic mechanism for 943 

crystallization always preventing low values of entropy to be attained has apparently not 944 

yet been suggested. 945 

The third resolut ion is that  an Ehrenfest  second-order transit ion occurs at TK 946 

at which ΔCP(T) falls rapidly (simplistically instantaneously) to zero , similar to that 947 

which is observed kinetically at Tg. The putative Ehrenfest second-order transit ion 948 

temperature TK is of course unobservable because of kinetic factors. It is difficult to refute 949 

this hypothesis other than to dismiss it as an artifact of extrapo lation, but as has just 950 

been noted this objection is itself weakened by the fact that very short extrapolations are 951 

needed in some cases. Furthermore an entropically based second-order transit ion at TK 952 

has been der ived for polymers by Gibbs  and DiMarzio [70], and although this 953 

theory has been criticized [71] its predictions agree well with experimental observations 954 

near Tg, including those on the effect of molecular weight on Tg for polymeric rings 955 

[72,73]. There are also several two state models ([74,75] for example) that predict that 956 

ΔCp(T) passes through a maximum at Tmax which is necessarily below Tg because such a 957 
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maximum has never been observed. If these models accommodate sharp decreases in 958 

ΔCp(T) below Tmax then they could essentially resolve the Kauzmann "paradox" without 959 

invoking an ideal Ehrenfest second order transition. For example a heat capacity function 960 

that mirrors the Lorentz loss function 961 

 962 

  2 21
p

C T
C T

T


 


,          (4.77) 963 

 964 

where C is a constant, has a maximum at max 1/T    and a sharp decrease for maxT T . Note that 965 

for T >> Tmax eq. (4.77) yields Cp(T)   1/T that is often approximately observed, and that as T 966 

approaches Tmax from above the T dependence becomes weaker than 1/T, as observed for many 967 

polymers [31]. Preliminary results [76] indicate that a good fit to the Fulcher equation is obtained 968 

from the heat capacity function given by eq. (4.77) for the temperature range Tg to 1.5Tg with a 969 

T0 value of about Tmax/3 [76]. Other preliminary calculations [76] suggest that good Fulcher fits 970 

also obtain using a combination of two halves of such "Debye loss" functions, in which eq. 971 

(4.77) describes Cp for T > Tmax = 1/Ω and a narrower version 972 
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 975 

for T < Tmax. Larger values of f produce sharper low frequency decreases in Cp(T) that in the 976 

limit f→∞ approaches the instantaneous decrease approximation. These heat capacity functions 977 

also yield good Fulcher fits with T0 values that approach the temperature T1/2 < Tmax at which ΔCp 978 

is half the maximum. Preliminary analyses [76] suggest that the ratio R = T0/T1/2 is 979 

approximately given by 980 

 981 

   1 0.64exp 2.33 1R f      .        (4.79) 982 

 983 

 Angell [77] has proposed modifications to the Kauzmann analysis that suggest that a first 984 

order transition, rather than an Ehrenfest second order transition, occurs at the low temperature 985 

limit of a supercooled liquid. However true this may be it does not change the Adam-Gibbs 986 

ansatz for relaxation times because it only affects the calculation of TK and does not affect Sc 987 

apart from its behavior deep in the glassy state, and the latter does not affect the Adam-Gibbs 988 

model above Tg. 989 

 The entropy is not required to reach mathematical zero for the Kauzmann analysis to be 990 

valid – very small values such as those that Fermi [1] referred to as not theoretically impossible 991 

(see §4.2.8) would suffice. For example the degrees of freedom that contribute to the boson peak 992 

(§4.2.8) are plausible sources for such small entropies. 993 

The Kauzmann analysis is not the only factor that suggests a thermodynamic 994 

dimension to the glass transition - two others also support it: 995 

(a) Glassy state relaxation data indicate that not only the creep data shown in [41] but 996 

also relaxation data for thermodynamic properties such as volume and enthalpy also shift 997 

to longer time scales with annealing. As noted in [41] this implies a link between the 998 

thermodynamic and nonlinear kinetic aspects of glassy state relaxation.  999 
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(b) There is compelling circumstantial evidence that , for two component mixtures that 1000 

are predicted or inferred to have an upper consulate phase separation temperature below 1001 

Tg, the values of Tg are almost independent of composition [78]. For example a 1002 

composition invariant Tg has been observed in the LiCl-H2O system in which phase 1003 

separation is directly observed [69,79]. This near constancy of Tg with composition 1004 

corresponds to the near constancy of the chemical potential of each component and a link 1005 

between thermodynamics and kinetics seems inescapable in these cases. 1006 

 1007 

4.8.3.4  Kinetics of the Glass Transition 1008 

 The mathematical description of these kinetics must necessarily incorporate those of the 1009 

supercooled liquid state (§4.8.1) and the glassy state (§4.8.2) as limiting cases. We describe here 1010 

only those formalisms that invoke the equilibrium temperature T and the fictive temperature Tf – 1011 

others such as the KAHR description are discussed in [8]. There are two expressions for 1012 

 0 , fT T  in common use. The Tool-Narayanaswamy-Moynihan (TNM) expression [80] is a 1013 

generalization of the Arrhenius equation: 1014 
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 1017 

where 0 1x   is sometimes referred to as the nonlinearity parameter. The value of h can be 1018 

obtained from [80] 1019 
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 1022 

where Qc is the cooling rate (not an especially good nomenclature but it is entrenched). However 1023 

the uncertainties are large (typically about ±20%). 1024 

The NLAG ("Nonlinear Adam-Gibbs") or SH ("Scherer-Hodge") expression [25,26] is 1025 

obtained from the AG equation (4.58) by assuming that Sc is a function of Tf rather than of T: 1026 

 1027 
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 1029 

so that 1030 
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 1033 

Equation (4.83) has several names: Adam-Gibbs-Vogel (AGV), Adam-Gibbs-Fulcher (AGF), in 1034 

addition to NLAG and Scherer-Hodge (the last name is not this author's choice but is 1035 

increasingly common and so is used henceforth). The full and partial temperature derivatives of 1036 

eq. (4.83) are 1037 

 1038 
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 1040 

and 1041 
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 1044 

Applying eqs. (4.84) and (4.85) to the glass transition temperature range where the 1045 

approximation f gT T T   is appropriate reveals that the TNM and SH parameters are related as 1046 

[8, 26] 1047 

 1048 

21 / ;gx T T            (4.86) 1049 

 1050 

 2 1gT T x              (4.87) 1051 

 1052 

and 1053 

 1054 
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 1058 

where Tg refers to the onset definition that is closer to the glassy state. Equation (4.89) is a 1059 

generalization of eq. (4.49) that applies to the nonequilibrium glass transition temperature range. 1060 

Equations (4.86) - (4.89) have proven to be good approximations. 1061 

 A more general AG expression for the TNM nonlinearity parameter x in terms of ΔCp(Tg) 1062 

and the residual configurational entropy Scg [8] is 1063 

 1064 

 
cg

AG

cg p g

S
x

S C T



,          (4.90) 1065 

 1066 

where again Tg refers to the onset definition. Equation (4.90) predicts lower values of x for larger 1067 

values of ΔCp(Tg) and smaller values of Scg. 1068 

 The relationship between the TNM nonlinearity parameter x and the Struik shift 1069 

parameter μ is not simple. Essentially the Struik relation is a special case of TNM. A simplified 1070 

analysis for restricted thermal histories has been given for pharmaceutical glasses [81] in which 1071 

it was noted that μ depends on the annealing temperature Ta and the WW nonexponentiality 1072 

parameter β as well as the nonlinearity parameter x. 1073 

 The nonlinearity parameter x has been shown to be inversely related to the Angell 1074 

fragility parameter m for the Scherer-Hodge equation [8,17,26]. Since the SH equation is usually 1075 
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a good description of  0ln , fT T  a generally inverse relation between x and m seems probable 1076 

although a rigorous mathematical derivation is not yet at hand. However a more general analysis 1077 

than SH establishes some specific conditions required for an inverse relation between x and m to 1078 

hold and contains the SH result as a special case. The relation 1079 

 1080 

     0 , expf mx fT T A f T g T  
 

        (4.91) 1081 

 1082 

is assumed, that apart from the separation of variables is the most general function possible. The 1083 

corresponding fragility index m given by eq. (4.53) is (for Tf = T) 1084 

 1085 
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 1087 

Full and partial differentiation of eq. (4.92) with respect to 1/T yields 1088 
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 1091 

and 1092 
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 1095 

so that 1096 

 1097 
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 1099 

Equations (4.92) and (4.95) yield 1100 

 1101 
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 1103 

The function  / 1/
gT

df d T  must be approximately equal to xh/R to ensure consistency with the 1104 

experiment so that 1105 

 1106 
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 1108 

The relationship between x and m therefore depends on the x-dependence of g(Tg). For the SH 1109 

expression    
1

2

11 /g gg T T T x
     and m is exactly inversely proportional to x. 1110 

 1111 

4.3.3.5  Thermorheological Complexity (TRC) 1112 

 All the analyses discussed so far consider the TNM and SH parameters to be independent 1113 

of temperature. However there are several reports throughout the literature that some of these 1114 

parameters are temperature dependent, in particular that the distributions of relaxation times 1115 

depend on both T and Tf. The following discussion of this possibility draws heavily from [82]. 1116 

 Consider first an Arrhenius temperature dependence for the structural relaxation time i  1117 

corresponding to the component Ei of a distribution of activation energies 1118 

 1119 

ln ln i
i A

E
A

RT
   .          (4.98) 1120 

 1121 

For a Gaussian distribution of activation energies with standard deviation σE the standard 1122 

deviation σlnτ in the corresponding logarithmic Gaussian distribution of relaxation times  lng   1123 

is therefore 1124 

 1125 

ln
E

RT



  .           (4.99) 1126 

 1127 

Thus any distribution of relaxation times is temperature dependent if there is an underlying 1128 

distribution of activation energies. Any physically reasonable distribution of activation energies 1129 

for condensed media is unlikely to be a delta function so that thermorheological simplicity must 1130 

generally be an approximation. For nonlinear expressions of relaxation times the distribution of 1131 

 ln   is a function of Tf as well as T. For example the SH expression [eq. (4.104) below] yields, 1132 

for a Gaussian distribution in B, 1133 

 1134 

 ln

21 /

B

fT T T



 


.          (4.100) 1135 

 1136 

Gaussian standard deviations have their counterparts in the widths of other distributions such as 1137 

WW so that eqs. (4.99) and (4.100) are generally applicable. 1138 

 Implementation of TRC phenomenologies requires that the decay function be expressed 1139 

as a Prony series with coefficients gi that are T and Tf dependent [82]. For the WW decay 1140 

function for example 1141 

 1142 
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 1144 

where the best fit values of both N and gi depend on β. This is computationally expensive 1145 

because the coefficients gi must be recalculated at every temperature step (although doing so 1146 

every n > 1 steps may be a good approximation). Estimates by the present author suggest that 1147 

computation times are around 0 110   days, depending on  g
T . 1148 

 1149 

4.9   Experimental DSC Results 1150 

The DSC technique ("Differential Scanning Calorimetry") is not strictly calorimetry but 1151 

the name is embedded in the literature and changing it here would serve no useful purpose. The 1152 

technique measures heat capacity by recording the heat flow into a sample needed to maintain a 1153 

programmed temperature during cooling and reheating. It is described here because enthalpy 1154 

relaxation is a good surrogate for structural relaxation in general, and there are abundant 1155 

experimental DSC data available for analysis because the technique is so experimentally 1156 

convenient. Modifications of the technique such as modulated DSC (MDSC) are not discussed. 1157 

The term "differential" originates from the fact that the difference in heat inputs to two 1158 

instrument pans (sample and reference) is measured in order that the sample and reference be at 1159 

the same temperature during heating and cooling. Heat input into the reference pan is adjusted to 1160 

maintain the specified rate of change of temperature – for cooling this requires a cold bath 1161 

(typically ice/water, dry ice or liquid nitrogen) in thermal contact with the reference pan (for 1162 

liquid nitrogen coolant helium is needed as a carrier gas because nitrogen could obviously 1163 

condense). The heat capacity is computed from 1164 

 1165 

  ,p c h

dq dT dq
C T Q

dt dt dt

     
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     

,       (4.102) 1166 

 1167 

where ,c hQ  is the cooling/heating rate and dq/dt is the measured differential heat input (typically 1168 

given in mW). Note that for any given Cp the differential heat input dq/dt is proportional to Qc,h 1169 

so that there is a lower limit to Qc,h that is determined by instrumental sensitivity. 1170 

Thermal lag shifts the DSC temperature calibration by an amount hth T  ([83] and 1171 

references therein). This is the basis of temperature calibration that usually uses the melting 1172 

temperature of a standard material (often indium) and preferably of two (the second is often 1173 

zinc). However the value of τth for pure metals is smaller than for most amorphous materials, 1174 

especially polymers, because of the larger thermal conductivity of metals. Hodge and Heslin [83] 1175 

reported a value of 5 ± 0.5 s obtained from indium temperature calibration compared with 15-17 1176 

s for their polymer sample. This discrepancy is atypically large because the sample shape was 1177 

deliberately irregular in order to maximize heat transfer effects, but it does illustrate the 1178 

uncertainties in temperature calibration. 1179 

 Sample preparation is straight forward and experimental reproducibility is generally 1180 

excellent for inorganic and simple organic glasses. Polymers present several complications of 1181 

which sample reproducibility is the most important. Variables such as molecular weight, 1182 

molecular weight distribution and degree of crystallinity are too often not reported or are just 1183 
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implicit in the identification of the manufacturer and/or product name. Crystallinity and crystal 1184 

morphology can also be affected by thermal histories before a DSC run – for example the 1185 

temperature and time spent above Tg for stabilization. Even when these are stated it is difficult to 1186 

quantify any material changes, particularly in crystallinity or crystal morphology. For example 1187 

changes in the micro crystallinity of PVC with the temperature excursions required to make the 1188 

traditional sample disk that were employed by Pappin et al. [84] were almost certainly the cause 1189 

of their TNM parameters being significantly different [8] from those found by Hodge and Berens 1190 

[85], who used the original powdered PVC material that was sent to the authors of [85]. 1191 

 The reproducibility of the heat capacity over the glass transition temperature range during 1192 

constant cooling and heating rates is a good test of the TNM formalism and it passes with flying 1193 

colors. Hodge and Berens [50] later introduced annealing times into the Moynihan calculations. 1194 

All these calculations combine the TNM expression eq. (4.80) or SH expression eq. (4.83), the 1195 

reduced time eq. (4.68), and Boltzmann superposition (Chapter One). These calculations are 1196 

discussed here because they illustrate many aspects of structural relaxation kinetics and provide 1197 

many insights into the glass transition phenomenon. 1198 

 During DSC scanning both T and Tf change with time (for isothermal annealing only Tf 1199 

changes of course). Thus the reduced time eq. (4.68) can be expressed in terms of the TNM eq. 1200 

(4.80) or SH eq. (4.83) using time dependent T and Tf: 1201 

 1202 

 
 

 

 0

1
expTNM

f

xxh
t A

RT t RT t


 
  

  

        (4.103) 1203 

 1204 

or  1205 
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 1208 

This is the first step in computing Tf[T(t)] and thence /fdT dT . The second step is to introduce 1209 

Boltzmann superposition by representing rate cooling and heating as a sequence of temperature 1210 

jumps ΔT (typically constant but not necessarily so, see below). The final result for TNM is  1211 
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 1214 

and that for SH is  1215 

 1216 
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 1218 

For eqs. (4.105) and (4.106) the integral within the square brackets is the reduced time integral 1219 

eq. (4.68) and the occurrence of Tf on both sides of the equations reflects nonlinearity. For 1220 

computations the integrals are of course replaced by summations for which dT' is replaced by 1221 

ΔT' and dt' is replaced by Δt'. The value of Δt' is variable for annealing, and ΔT' is variable for 1222 

large overshoots in N

pC [83], as discussed below. 1223 

 The agreement between computed TNM and experimental N

pC  is generally excellent for 1224 

inorganic materials and thermal histories without annealing [8]. The SH formalism does not 1225 

generally improve on these results. For organic polymers and for thermal histories that include 1226 

isothermal annealing [86], however, the agreement is less satisfactory. The reasons for these 1227 

discrepancies are discussed below and include the fact that the gamut of TNM parameters for 1228 

organic polymers is typically larger, in particular the lowest values of x and β for polymers are 1229 

much smaller than those of the lowest values for inorganic materials [8]. 1230 

 1231 

4.9.1   Data Analysis 1232 

 The general computation conditions reported by Hodge and Heslin [83] are listed below. 1233 

Unfortunately these conditions cannot be compared with those given in most other reports 1234 

because the latter often provide insufficient detail. Computation times for thermal histories 1235 

without annealing are typically about 2 s on modest computers using Matlab® or Gnu Octave, 1236 

and optimization times for thermal histories that include annealing are typically 20 – 30 minutes. 1237 

(a)  The currently used value of ΔT is 0.1 K except for N

pC  overshoots in excess of 1.0. For the 1238 

latter the temperature steps are reduced in inverse proportion to N

pC  for the previous step – for 1239 

example for 2.5N

pC   the following temperature step is 0.1/ 2.5 0.04 K. Computed values of 1240 

dTf/dT at the regular temperature intervals needed for comparison with experiment are obtained 1241 

by cubic spline interpolation. 1242 

(b)  Annealing times are divided into 100 logarithmically even intervals per decade, from 0.1s to 1243 

the annealing time ta in seconds, using the Matlab®/GNU Octave logspace function. For 1244 

example for ta = 24 hours 48.64 10  s the number of annealing intervals is 594. Very long 1245 

annealing times increase the calculation time beyond the 2 s or so needed for thermal histories 1246 

without annealing. 1247 

(c)  The WW function is used explicitly (rather than being approximated as a Prony series as 1248 

done earlier to reduce computation times that are no longer problematic). 1249 

(d)  The Matlab®/GNU Octave fminsearch (simplex) function is used for optimization. This 1250 

algorithm allows optimization of all four TNM and SH parameters and does not readily get 1251 

trapped in a local minimum. 1252 
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Thermal lag effects are corrected for by using experimentally determined thermal 1253 

constants 
th . The effects of 

th  have been discussed ever since the DSC technique was 1254 

introduced (see refs in [8]) and have been analyzed in detail by Hodge and Heslin [83] with 1255 

regard to the TNM formalism. The Hodge/Heslin value of 
th  was determined from the changes 1256 

in heat flow and measured heating rate as a function of time following a programmed change in 1257 

heating rate and equating 
th  to the displacement of one from the other (roughly 15 s in this 1258 

case). The curve shapes were about the same so that this displacement implied a approximately 1259 

exponential Heaviside response function with a time constant of 15 s. When data were corrected 1260 

for this time constant the experimental N

pC  data for no annealing were independent of the ratio 1261 

/h cQ Q  within uncertainties, as predicted by the TNM model (including a /h cQ Q  = 25 K/min 1262 

history for which the original data exhibited no overshoot at all). Since the TNM model gives a 1263 

very good account of N

pC  when 
h cQ Q  the confirmation of this prediction using an exponential 1264 

Heaviside response function indicates that the latter is a good approximation. 1265 

The expression for deconvoluting observed experimental data ,

N

p obsC  to produce the true 1266 

"original" ,

N

p origC  is 1267 

 1268 
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 1270 

or 1271 
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 1274 

A similar analysis is implied in publications by Hutchinson et al. [87,88] although no details 1275 

were given. 1276 

4.9.2   Sub-Tg Annealing Endotherms 1277 

 As noted above Hodge and Berens [85] were the first to apply the TNM formalism to 1278 

polymers and thermal histories that included annealing. When they applied it to the polymer 1279 

PVC they found that it required TNM parameters x and β far smaller than any of those reported 1280 

for inorganic materials. These extreme parameters produced a surprising result – upon reheating 1281 

the enthalpy lost during annealing was sometimes recovered well below the glass transition 1282 

temperature range to produce sub-Tg peaks in the heat capacity. These peaks are well reproduced 1283 

by the TNM and SH formalisms. Similar annealing peaks have also been observed for PMMA 1284 

[86] (albeit closer to Tg) and are also well reproduced by the TNM and SN formalisms [86]. 1285 

The explanation of these peaks was not recognized in 1995 when the effects of annealing 1286 

on polymers were reviewed [41]. To explain the peaks it is first useful to express nonexponential 1287 

decay functions such as WW as a Prony series [§1.4.3.1] of exponential decay functions, with 1288 

different relaxation times and weighting factors that are the equivalent of a distribution of 1289 

relaxation times: 1290 

 1291 
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 1293 

Lesikar and Moynihan [89,90] introduced a formal order parameter description of the glass 1294 

transition that associated each τn with a fictive temperature Tf,n  such that 1295 

 1296 
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 1298 

where 1299 

 1300 

1

1
N

n

n

g
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 .           (4.111) 1301 

 1302 

When each τn was made a function of Tf,n they found that the fits to experimental data were 1303 

worse than if 0  (and hence all τn) were determined by the global Tf. This is the key to why sub-1304 

Tg endotherms can occur. During initial heating of an annealed glass with low Tf  and long 0  the 1305 

shortest τn components relax first and contribute to a decrease in   so that the global Tf 1306 

increases towards the un-annealed value and /N

p fC dT dT  also increases. Equivalently the 1307 

initially rapid decrease in  t  for a nonexponential decay function such as WW also enables 1308 

partial relaxation to occur and therefore changes the global 0  and Tf . The decrease in the global 1309 

0  makes further changes in N

pC  more rapid well below Tg. As Tf  approaches the glassy Tf' that 1310 

existed before annealing its rate of approach towards Tf' decreases and N

pC  decreases until the 1311 

onset of the glass transition temperature range is approached at 'fT , thus  producing the observed 1312 

sub-Tg peak in N

pC . This analysis also explains why sub-Tg endotherms that occur well below the 1313 

Tg range are essentially superimposed on the glass transition for unannealed glasses. Note that 1314 

both nonexponentiality and nonlinearity come into play here. The more rapidly the initial 1315 

decrease in Tf  is during heating the faster the distribution moves to shorter times because of 1316 

nonlinearity, and the rapidity of the initial decrease in Tf  depends on nonexponentiality. 1317 

 Not all sub-Tg endotherms are generated by enthalpy relaxation. There is always the 1318 

possibility that they are produced by the melting of crystals or crystallites formed during 1319 

annealing. A yet to be published result by Hodge [91] provides a good example of how easily the 1320 

two possibilities can be confused, especially if estimates of experimental uncertainties are too 1321 

pessimistic. Hodge re-analyzed the DSC data of Sartor et al. [92] on annealed hydrated proteins 1322 

that exhibited broad and weak endotherms when scanned after annealing at several temperatures. 1323 

The experimental uncertainties in the widths and peak heights of the endotherms were estimated 1324 
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to be large because of a sloping and curved background, but TNM parameters were nevertheless 1325 

found that fitted the data much better than the published set of parameters; these values are [92]: 1326 

  4ln 80; / 2.0 10 K; 1.0; 0.04A s h R x       . The largest discrepancy between observed 1327 

and calculated endotherm properties was the annealing temperature dependence of the 1328 

endotherm magnitudes but this was thought to be within experimental uncertainty. However, 1329 

Tombari and Johari later reported [93] that the endotherms were almost certainly due to melting 1330 

of crystals of NaCl.2H2O in the commercial samples of the hydrated proteins, formed during 1331 

annealing. Hodge's estimates of the experimental endotherm areas passed through a maximum at 1332 

an annealing temperature 238K that was 14K below the melting temperature 252K of the 1333 

crystals, at which a maximum rate of crystallization might reasonably be expected. 1334 

 1335 

4.9.3   TNM Parameters 1336 

 There are rough correlations between the TNM parameters x and h and between x and β 1337 

[32,33,86] but they are weak and are suggestive of, rather than evidence for, any possible 1338 

underlying cause. The WW β parameter has the least uncertainty and the value of h can be 1339 

obtained without TNM optimization so that in principle any correlation between h and β will 1340 

have the smallest statistical uncertainty, but remarkably no plot of h versus β has been published 1341 

to this author's knowledge. For most of the data in Table 1 in [8] (the omitted data are those for 1342 

which β is not listed) such a plot indeed reveals less scatter but the correlation remains weak, as 1343 

indicated by the correlation coefficient 0.64 for h versus β compared with 0.42 for h versus x and 1344 

0.41 for x versus β.  1345 

 1346 

4.9.4   SH Parameters 1347 

Equations (4.87) and (4.88) have been confirmed for those cases when the TNM and SH 1348 

models have been fitted to the same data. Many reported SH parameters are obtained from TNM 1349 

fits using these equations because TNM parameters are much more common (many pre-date the 1350 

introduction of the SH formalism). As noted above the SH formalism does not generally give 1351 

improved fits compared with TNM [26] but the SH parameters can be more plausibly linked to 1352 

possible molecular factors, discussed next. 1353 

 Consider first the AG parameters *

cs  and Δμ in eq. (4.62). This equation indicates that C 1354 

and *

cs  are both needed before Δμ can be obtained from experimental values of BSH. For this 1355 

purpose it is convenient to assume that ΔCp(T) is given by 1356 

 1357 

  ' /p gC T C T T            (4.112) 1358 

 1359 

so that C' equals  p gC T  and eq. (4.62) becomes 1360 

 1361 

 
 

 

* * ln

'
B B

AA c A c
SH

g g p g g p g

NN s N s
B

k C T k T C T T C T

    
  

 
.      (4.113) 1362 

 1363 

The unit of mass also needs to be defined and for this the concept of a "bead" introduced by 1364 

Wunderlich and Jones [94] is helpful. Wunderlich defined the bead as the monomer segment of a 1365 

polymer (such as –CH2– in polyethylene), and for small molecules it is a similarly small 1366 
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chemical entity (for example toluene is regarded as having two beads corresponding to the 1367 

phenyl ring and the methyl substituent). For inorganic materials the bead is considered to be a 1368 

rotatable unit such as a sulfate or nitrate, either as ions or groups covalently bound to a larger 1369 

molecule. These examples indicate that the bead is an intuitive rather than a rigorous metric for 1370 

mass.  1371 

 The value of *

cs  is also intuitive and is fraught with uncertainties. The most commonly 1372 

assumed value is 1373 

 1374 
* ln 2c Bs k            (4.114) 1375 

 1376 

because there is a minimum of two configurations – those before and after rearrangement. At 1377 

least two exceptions to this have been discussed, however. First, Sales [95] reported on some 1378 

phosphate glasses and reversed the logic by equating Δμ with the P – O bond strength and 1379 

discussed the derived values of *

cs  in terms of the coordination number of phosphates around the 1380 

Pb and Fe cations. He found that the differences in *

cs  values were consistent with the crystal-1381 

field stabilized coordination around the Fe cation being more robust than the coordination around 1382 

the Pb cations: as the iron content increased from 0% to 25%Fe/75%Pb the values of *

cs  1383 

increased from 4.6 to 24.5. Thus values of *

cs  greater than ln 2Bk  have some support. Second, 1384 

Hodge [26] suggested that eq. (4.114) is inappropriate for polymers because of constraints 1385 

imposed by consecutive covalent bonds, and eq. (4.114) was replaced by [96] 1386 

 1387 
* 3ln 2 ln8c B Bs k k  ,          (4.115) 1388 

 1389 

because "…two rotational states are available to each segment and [a] crankshaft motion is 1390 

assumed to involve 3 segments…". If three distinguishable rotational states per segment and no 1391 

crankshaft motion is assumed then for two adjacent segments 1392 

 1393 
* 2ln3 ln9c B Bs k k  .          (4.116) 1394 

 1395 

The difference between ln 8 and ln 9 is smaller than any reasonable uncertainty in *

cs . For large 1396 

nonpolymeric molecules that are not linear the crankshaft motion is irrelevant and it is 1397 

reasonable to extend eq. (4.116) to 1398 

 1399 
* 1ln3N

c Bs k  ,           (4.117) 1400 

 1401 

where N is the number of beads (segments) and N-1 is the number of rotatable bonds between 1402 

them. Equation (4.117) has not been suggested before and like eq. (4.115) for polymers it has 1403 

dubious statistical rigor so that values of Δμ derived from it must be regarded as approximate. 1404 

Because of intra- and inter- molecular geometrical constraints the number of configurations for 1405 

large molecules is probably less than that given by eq. (4.117) and derived values of Δμ should 1406 

therefore be regarded as minimum ones. 1407 

Hodge and O'Reilly [96] analyzed the SH parameters for five nonpolymeric organic 1408 

molecules: the ortho-, meta- and para- (o-, m-, p-) isomers of indane, o-terphenyl (OTP), and tri-1409 
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α-naphthyl benzene (TNB). The chemical formulae for these materials are given in [96]. Their 1410 

data are discussed in detail here (more than in the original publication) for two reasons: (i) re-1411 

evaluations of *

cs  using eq. (4.117); (ii) revised SH values of Δμ based on these new values of *

cs . 1412 

Data from [96] are summarized in Table 4.1 that combines entries in Tables 1 and 4 of [96] as 1413 

well as results from the new calculations. The values of N correspond to the original number 11 1414 

as well as the number of Wunderlich segments for the three indane isomers cited in [96]. The 1415 

units of Δμ are kJ mol
-1

, not kJ (mol-bonds)
-1

 as stated in [96]. The boldface Δμ entries 1416 

correspond to the best estimates of N for each material. 1417 

 1418 

TABLE 4.1 1419 

QUANTITY o-indane m-indane p-indane OTP TNB 

Tg (K) 357 359 385 240 340 

ΔCp(Tg) [JK
-1

mol
-1

] 161 198 182 113 150 

B (K) 4500 2600 7400 4400 2100 

T2 (K) 280 300 280 180 260 

Δμ (N=10) [kJmol
-1

] 95 63 190 68 42 

Δμ (N=11) [kJmol
-1

] 86 56 170 61 38 

Δμ (N=13) [kJmol
-1

] 71 47 140 51 31 

Δμ (N=14) [kJmol
-1

] 66 43 130 47 29 

Δμ (N=16) [kJmol
-1

] 57 38 110 41 25 

Δμ (N=17) [kJmol
-1

] 53 35 110 38 23 

 1420 

Inter-segmental rotational energy barriers ΔE are given by the values of Δμ divided by 1421 

N-1. Using N = 11 for the (o-, m-, p-) indanes yields ΔE = 9, 6, 17 kJ/bond, smaller than typical 1422 

rotational energy barriers for isolated molecules by a factor of 2 or so and probably by more for 1423 

molecules constrained in condensed media, but as noted above the cited Δμ values are minimum 1424 

ones. The Wunderlich N values for the o-, m- and p- indane isomers are 14, 17 and 16 1425 

respectively and these give even smaller values of ΔE. For OTP the number of Wunderlich 1426 

segments is 113/11.3 = 10 and the average rotational energy barrier is 61kJ/10 = 6.1 kJ, and for 1427 

TNB the number of beads 150/11.3(?) = 13 and the average rotational energy barrier is 38kJ/13 = 1428 

3 kJ. Both these barrier energies are also too small but are again minimum ones. 1429 

 The weak correlations between the TNM parameters noted above in §4.9.3 become 1430 

stronger when they are expressed in terms of SH parameters. In particular when the SH 1431 

parameter  
1

2/ 1gT T x


   is plotted against BSH 2 /x h R  and materials are separated into 1432 

plausible different molecular types [32,33] three linear correlations are clearly evident (if two 1433 

suspiciously outlying polystyrene data are removed the polymer correlation improves. There is 1434 

an indisputable extrapolation towards Tg/T2 → 1 as BSH → 0 for each of the three correlation 1435 

lines. Since BSH is proportional to Δμ in the AG model and the proportionality constant cannot be 1436 

zero the extrapolation B → 0 corresponds unambiguously to Δμ → 0 and suggests that as Δμ 1437 

approaches zero there is no (average) barrier to prevent Tg approaching some fundamental 1438 

amorphous state temperature that could be approximated by T2 and/or TK ("ideal glass", see 1439 

§4.2.2.6). This in turn again suggests that some fundamental lower limit to Tg is possible that 1440 

could have thermodynamic roots and could even be a candidate for Fermi's "not theoretically 1441 

impossible" state of small but nonzero entropy at 0 K (§4.2.2.6 and [1]). 1442 

1443 
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